TYJ-01 R MATHEMATICS SOLUTION 11 OCTOBER 2019

31. (c) Given lines are $2 x-y+7=0$ and $2 x-y+5=0$

Both the lines are on same side of origin.
Distnace between two parallel lines $=\frac{7-5}{\sqrt{2^{2}+1^{2}}}=\frac{2}{\sqrt{5}}$.
32. (b) $L \equiv 3 x-4 y-8=0$
$\mathrm{L}_{(3,4)}=9-16-8<0$ and $\mathrm{L}_{(2,-6)}=6+24-8>0$
Hence, the points lie on different side of the line.
33. (a) It is given that the lines $a x+2 y+1=0, b x+3 y+1=0$ and $c x+4 y+1=0$ are concurrent, therefore
$\left|\begin{array}{lll}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{array}\right|=0$
$\Rightarrow-a+2 b-c=0 \Rightarrow 2 b=a+c$
$\Rightarrow a, b, c$ are in A. P.
34. (b) $-y+3 x+4=0$ and perpendicular is $\frac{y-3}{x-2}=\frac{-1}{3}$ or $3 y+x-11=0$. Therefore foot is $x=\frac{-1}{10}, y=\frac{37}{10}$.
35. (c) Let the co-ordinate of vertex A be (h, k). Then $A D$ is perpendicular to $B C$, therefore $O A \perp B C$
$\Rightarrow \frac{\mathrm{k}-0}{\mathrm{~h}-0} \times \frac{-1}{1}=-1 \Rightarrow \mathrm{k}=\mathrm{h}$

Let the coordinates of D be (α, β). Then the co-ordinates of O are $\left(\frac{2 \alpha+\mathrm{h}}{2+1}, \frac{2 \beta+\mathrm{k}}{2+1}\right)$. Therefore $\frac{2 \alpha+\mathrm{h}}{3}=0$ and $\frac{2 \beta+\mathrm{k}}{3}=0 \Rightarrow \alpha=-\frac{\mathrm{h}}{2}, \beta=\frac{-\mathrm{k}}{2}$.
Since (α, β) lies on $\mathrm{x}+\mathrm{y}-2=0 \Rightarrow \alpha+\beta-2=0$
$\Rightarrow-\mathrm{h} / 2-\mathrm{k} / 2-2=0 \Rightarrow \mathrm{~h}+\mathrm{k}+4=0$
$\Rightarrow 2 h+4=0 \Rightarrow h=k=-2, \quad[$ from (i)]
Hence the coordinates of vertex A are ($-2,-2$).
36. (a) Equation of the line passing through (3, 8) and perpendicular to $x+3 y-7=0$ is $3 x-y-1=0$. The intersection point of both the lines is $(1,2)$
Now let the image of $A(3,8)$ be $A^{\prime}\left(x_{1}, y_{1}\right)$, then point $(1,2)$ will be the mid point of $A A^{\prime}$.
$\Rightarrow \frac{\mathrm{x}_{1}+3}{2}=1 \Rightarrow \mathrm{x}_{1}=-1$ and $\frac{\mathrm{y}_{1}+8}{2}=2 \Rightarrow \mathrm{y}_{1}=-4$.
Hence the image is $(-1,-4)$.
37. (b) Let the co-ordinates of the third vertex be (2a, t).
$A C=B C \Rightarrow t=\sqrt{4 a^{2}+(a-t)^{2}} \Rightarrow t=\frac{5 a}{2}$
So the coordinates of third vertex C are $\left(2 a, \frac{5 a}{2}\right)$
Therefore area of the triangle
$= \pm \frac{1}{2}\left|\begin{array}{ccc}2 a & \frac{5 a}{2} & 1 \\ 2 a & 0 & 1 \\ 0 & a & 1\end{array}\right|=\left|\begin{array}{ccc}a & \frac{5 a}{2} & 1 \\ 0 & -\frac{5 a}{2} & 0 \\ 0 & a & 1\end{array}\right|=\frac{5 a^{2}}{2}$ sq. units.
38. (a) Required locus of the point (x, y) is the curve $|x|+|y|=1$. If the point lies in the first quadrant, then $x>0, y>0$ and so $|x|+|y|=1 \Rightarrow x+y=1$, which is straight line $A B$. If the point (x, y) lies in second quadrant then $x<0, y>0$ and so $|x|+|y|=1 \Rightarrow-x+y=1$

Similarly for third and fourth quadrant, the equations are $-x-y=1$ and $x-y=1$.
Hence the required locus is the curve consisting of the sides of the square $A B C D$.
39. (c) According to question, $x_{1}=\frac{2+4+x}{3} \Rightarrow x=3 x_{1}-6$
$y_{1}=\frac{5-11+y}{3} \Rightarrow y=3 y_{1}+6$
$\therefore 9\left(3 x_{1}-6\right)+7\left(3 y_{1}+6\right)+4=0$
Hence locus is $27 x+21 y-8=0$, which is parallel to $9 x+7 y+4=0$.
40. (d) Let the equation of perpendicular bisector $F N$ of $A B$ is $x-y+5=0$

The middle point F of $A B$ is $\left(\frac{x_{1}+1}{2}, \frac{y_{1}-2}{2}\right)$ lies on line (i). Therefore $x_{1}-y_{1}=-13$
.....(ii)

Also $A B$ is perpendicular to $F N$. So the product of their slopes is -1 .
i.e. $\frac{y_{1}+2}{x_{1}-1} \times 1=-1$ or $x_{1}+y_{1}=-1$

On solving (ii) and (iii), we get $B(-7,6)$.
Similarly C $\left(\frac{11}{5}, \frac{2}{5}\right)$.
Hence the equation of $B C$ is $14 x+23 y-40=0$.
41. (c) From figure,

$\left(\frac{b / 2}{a / 2}\right)\left(\frac{b}{-a / 2}\right)=-1 \Rightarrow a^{2}=2 b^{2} \Rightarrow a= \pm \sqrt{2} b$.
42. (c) Any line through $(1,-10)$ is given by $y+10=m(x-1)$

Since it makes equal angle say ' α ' with the given lines $7 x-y+3=0$ and $x+y-3=0$, therefore $\tan \alpha=\frac{m-7}{1+7 m}=\frac{m-(-1)}{1+m(-1)} \Rightarrow m=\frac{1}{3}$ or -3
Hence the two possible equations of third side are $3 x+y+7=0$ and $x-3 y-31=0$.
43. (a) $A D=\left|\frac{-2-2-1}{\sqrt{(2)^{2}+(-1)^{2}}}\right|=\left|\frac{-5}{\sqrt{5}}\right|=\sqrt{5}$
$\because \tan 60^{\circ}=\frac{\mathrm{AD}}{\mathrm{BD}} \Rightarrow \sqrt{3}=\frac{\sqrt{5}}{\mathrm{BD}} \Rightarrow \mathrm{BD}=\sqrt{\frac{5}{3}}$

$\therefore B C=2 B D=2 \sqrt{2 x-y}=\sqrt{\frac{20}{3}}$.
44. (d) $m_{1}=-1 / 3$ and $m_{2}=3$. Hence lines $x+3 y=4$ and $6 x-2 y=7$ are perpendicular to each other. Therefore the paralellogram is rhombus.
45. (b) Area of the right angled triangle is
$=\frac{1}{2}($ Perpendicular $) \times($ base $)=\frac{1}{2} a b$.

